WSU develops new mini robots inspired by insects

Isbel Lázaro.
Share on social networks
minirobots inspirados en insectos

At Washington State University (WSU), two mini robots inspired by insects have been created: a minibug and a mosquito. These fully functional microrobots are the smallest, lightest and fastest yet.

Its potential application covers various areas, such as artificial pollination, search and rescue operations , environmental monitoring, microfabrication and robot-assisted surgery. Reporting on its development in the proceedings of the International Conference on Intelligent Robots and Systems of the IEEE Robotics and Automation Society, it is highlighted that the minibug has a weight of eight milligrams, while the mosquito weighs 55 milligrams, both capable of moving at a speed of approximately 6 millimeters per second .

It is fast compared to other microrobots at this scale, although it is still behind its biological relatives ,” said Conor Trygstad, a doctoral student in the School of Mechanical and Materials Engineering and lead author of the work. An ant typically weighs up to five milligrams and can move at almost one meter per second.

Mini robots inspired by insects: the concept of their manufacture

The essence of these miniature robots lies in their small actuators, which drive their movement. Trygstad implemented a novel manufacturing technique to reduce the size of the actuator to less than 1 milligram, making it the smallest ever created.

Torobo El robot carpintero hecho en Japon que puede cortar y martillar la madera
Unete a nuestra Masterclass gratuita sobre Sistemas de Gestion de la Calidad sgc
Avances en la Energia Nuclear Espacial del Reino Unido
Cientificos trabajan en un robot serpiente para la inspeccion de tuberias 2
HKIC y Galbot desarrollaran la IA en el mercado
Torobo: The made-in-Japan carpenter robot that can cut and hammer wood
Join our free Masterclass on Quality Management Systems!
Rolls-Royce gets National Space Innovation Program funding for space nuclear power breakthroughs
Scientists work on snake robot for pipeline inspection
HKIC and Galbot sign agreement to boost artificial intelligence industry in Hong Kong
PlayPause
previous arrowprevious arrow
next arrownext arrow
 

The actuators are the smallest and fastest ever developed for microrobotics ,” said Néstor O. Pérez-Arancibia, Flaherty Associate Professor in Engineering in WSU’s School of Mechanical and Materials Engineering, who led the project.

The actuator uses a shape memory alloy that has the ability to modify its shape when heated. It is called “shape memory” because it retains and then returns to its original configuration. Unlike a conventional motor that would power a robot’s movement, these alloys lack moving parts or rotating components.

Shape memory alloys are generally not used in large-scale robotic movements due to their slowness. However, in the case of the Washington State University (WSU) robots, the actuators are made from two small shape memory alloy wires that have a diameter of 1/1000th of an inch.

By applying a small amount of current, the cables can heat up and cool down quickly, allowing the robots to move their fins or move their feet up to 40 times per second. In initial testing, the actuator also demonstrated the ability to lift more than 150 times its own weight . Compared to other technologies used to generate movement in robots, SMA technology also requires a minimal amount of electricity or heat to drive movement.

The SMA system requires much less sophisticated systems to operate ,” Trygstad said.

Importantly, the researchers intend to emulate another type of insect and develop a mosquito-like robot that can move both on and just below the surface of water. Likewise, they are working on the implementation of tiny batteries or catalytic combustion systems to make their robots completely autonomous and not dependent on an external power source.

Don’t miss any of our posts and follow us on social media!

Inspenet.com YouTube LinkedIn Facebook Instagram

Source and photo: news.wsu.edu

Share this news on your social networks
Rate this post
1 star2 stars3 stars4 stars5 stars (No rating yet)
loading spinnerLoading...