Por: Franyi Sarmiento, Ph.D., Inspenet, 13 de julio de 2022
Mejorar la eficiencia de la exploración mineral y la minería en Europa mediante el desarrollo de nuevas tecnologías y modelos es el principal objetivo del proyecto Vector, una iniciativa europea que cuenta con la participación de científicos del Consejo Superior de Investigaciones Científicas (CSIC).
Los investigadores crearán una nueva herramienta de análisis geológico, que utiliza el aprendizaje automático, para realizar mediciones geológicas, geoquímicas y geofísicas más sostenibles y menos invasivas.
“Este flujo de trabajo será transferible y se validará en tres cuencas sedimentarias europeas. El objetivo final es que Europa reduzca su dependencia a la hora de importar materias primas empleadas en energías renovables y tecnologías digitales”, destaca Ramón Carbonell, uno de los investigadores del Geociencias Barcelona del CSIC (GEO3BCN-CSIC) que forman parte de este proyecto liderado por el Instituto Helmholtz de Freiberg para la Tecnología de los Recursos (HIF), del Helmholtz Zentrum Dresden-Rossendorf (HZDR), en Alemania.
Vector impulsará el conocimiento basado en la accesibilidad y evidencia científica para que Europa dependa más de sus propios depósitos y yacimientos.
El proyecto desarrollará un conjunto de herramientas integradas en una plataforma única, distribuida, multimodal, de autoaprendizaje e interactiva. Se tendrán en cuenta, tanto el potencial de exploración geológica, como los factores socioeconómicos, para obtener una evaluación de las regiones más adecuadas para la exploración y, en su caso, la explotación minera.
En concreto, los científicos del GEO3BCN-CSIC implementarán, probarán y validarán una metodología de exploración del subsuelo, hasta profundidades de 2.000 a 3.000 metros, mediante el uso de ruido sísmico ambiental. “Otro objetivo es la implementación de interpretación integrada y construcción de modelos tridimensionales mediante el uso de machine learning. Este apartado consiste en utilizar datos procedentes de diferentes disciplinas geofísicas, geológicas y geoquímicas e integrarlos en un software para obtener modelos geológicos tridimensionales”, indica el investigador del CSIC.
Científicos del Instituto de Geociencias, (IGEO-CSIC-UCM), liderados por el investigador del CSIC Fernando Tornos, se encargarán en este proyecto de la caracterización geológica y mineralógica de las muestras de sondeos, una información que será integrada con los datos de observaciones indirectas del subsuelo.
Este material del portal DICYT fue editado para mayor claridad, estilo y extensión.
Fuente Dicyt: https://www.dicyt.com/noticias/machine-learning-para-mejorar-la-mineria-europea-en-materias-primas-estrategicas